Conference papers

  1. J. Tschannerl, J. Ren, J. Zabalza, and S. Marshall, “Segmented autoencoders for unsupervised embedded hyperspectral band selection,” in IEEE European Workshop on Visual Information Processing (EUVIP), Nov. 2018, pp. 1-6.
  2. H. Sun, J. Ren, Y. Yan, J. Zabalza, and S. Marshall, “Joint kernelized sparse representation classification for hyperspectral imagery,” in Hyperspectral Imaging and Applications Conference (HSI), Oct. 2018.
  3. J. Zabalza, Z. Fei, C. Wong, Y. Yan, C. Mineo, E. Yang, T. Rodden, J. Mehnen, Q.-C. Pham, and J. Ren, “Making industrial robots smarter with adaptive reasoning and autonomous thinking for real-time tasks in dynamic environment: A case study,” in International Conference on Brain Inspired Cognitive Systems (BICS), Jul. 2018, pp. 790-800.
  4. Z. Yang, F. Cao, J. Zabalza, W. Chen, and J. Cao, “Spectral and spatial kernel extreme learning machine for hyperspectral image classification,” in International Conference on Brain Inspired Cognitive Systems (BICS), Jul. 2018, pp. 394-401.
  5. S. Marshall, T. Kelman, T. Qiao, P. Murray, and J. Zabalza, “Hyperspectral imaging for food applications,” in IEEE European Signal Processing Conference (EUSIPCO), Sep. 2015, pp. 2854-2858.
  6. J. Zabalza, J. Ren, and S. Marshall, “’On the fly’ dimensionality reduction for hyperspectral image acquisition,” in IEEE European Signal Processing Conference (EUSIPCO), Sep. 2015, pp. 749-753.
  7. T. Qiao, J. Ren, J. Zabalza, and S. Marshall, “Prediction of lamb eating quality using hyperspectral imaging,” in Optical Characterization of Materials Conference (OCM), Mar. 2015, pp. 15-25.
  8. T. Qiao, J. Ren, C. Craigie, J. Zabalza, C. Maltin, and S. Marshall, “Comparison between near infrared spectroscopy and hyperspectral imaging in predicting beef eating quality,” in Hyperspectral Imaging and Applications Conference (HSI), Oct. 2014.
  9. J. Zabalza, J. Ren, and S. Marshall, “Singular spectrum analysis for effective noise removal and improved data classification in hyperspectral imaging,” in IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Jun. 2014.
  10. J. Zabalza, J. Ren, C. Clemente, G. di Caterina, and J.J. Soraghan, “Embedded SVM on TMS320C6713 for signal prediction in classification and regression applications,” in IEEE European DSP Education and Research Conference (EDERC), Sep. 2012, pp. 90–94.
  11. H. Beltrán, E. Pérez, C. Ariño, E. Belenguer, N. Aparicio, J. Zabalza, J. Torrelo, and S. Subiela, “Use of Kalman filters for renewable energy sources isolation transformers current harmonics compensation,” in IEEE European Conference on Power Electronics and Applications (EPE), Sep. 2009.
  12. J. Zabalza, S. Molla, R. Díaz-Calleja, E. Riande, and V. Compañ, “Análisis teórico-experimental de la conductividad de una membrana de intercambio protónico en una pila de combustible del tipo PEMFC,” in VI Jornadas Nacionales de Ingeniería Termodinámica (JNIT), Jun. 2009.
  13. J. Zabalza and J. Cañada, “Análisis de modelos de aerosoles utilizando el código SMARTS. Aplicación a medidas experimentales en Valencia,” in VI Jornadas Nacionales de Ingeniería Termodinámica (JNIT), Jun. 2009.
  14. H. Beltrán, J. Zabalza, C. Ariño, E. Belenguer, E. Pérez, and N. Aparicio, “Improved Kalman filter based inverter control for reduction of low order current harmonics due to isolation transformers in renewable energy sources,” in International Conference on Renewable Energies and Power Quality (ICREPQ), Apr. 2009.
© 2020 Jaime Zabalza's Webpage